

C-14-CHPP/EE-102

4041

BOARD DIPLOMA EXAMINATION, (C-14)

APRIL/MAY-2015

DEEE—FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS-I

Time: 3 hours]

[Total Marks : 80

PART—A

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answer should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Resolve $\frac{7x}{(3x \ 1)(2x \ 1)}$ into partial fractions.

2. Define skew-symmetric matrix. Give an example.

3. Find the value of $\begin{vmatrix} 1 & 2 \\ 2 & 1 \\ 2 & 1 \end{vmatrix}$, where is the cube root of unity.

4. Prove that $\sin^2 52 \frac{1}{2}^{\circ} \quad \sin^2 22 \frac{1}{2}^{\circ} \quad \frac{\sqrt{3}}{4\sqrt{2}}$.

/4041

[Contd...

- **5.** Prove that $\frac{\sin 3}{1 + 2\cos 2}$ sin .
- 6. Express $\frac{(1 i)(2 i)}{3 i}$ in a ib form.
- 7. Find the perpendicular distance from the point (3, 2) to the line 4x 5y 6 0.
- 8. Find the equation of circle with (2, 3) and (6, 9) as ends of diameter.
- **9.** Evaluate $\lim_{x \to 0} \frac{x}{1 \sqrt{1 x}}$.

10. Find the derivative of $\frac{\sin x}{1 \cos x}$ with respect to x.

PART-B

10×5=50

Instructions : (1) Answer any five questions.

(2) Each question carries **ten** marks.

(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.

$1 \quad 7 \quad 1$

11. (a) Express the matrix 2 3 4 as sum of symmetric and 5 0 5

skew-symmetric matrices.

- (b) Solve the equations $3x \ y \ 2z \ 3$, $2x \ 3y \ z \ 3$, $x \ 2y \ z \ 4$ by determinant method.
- **12.** (a) If $A \ B \ C$, then show that $\sin 2A \ \sin 2B \ \sin 2C \ 4 \sin A \sin B \sin C$
 - (b) Prove that $\tan^{1}(n) \tan^{1}(n^{2} n 1) \cot^{1}(n 1) 0$.

* /4041

[Contd...

13. (a) Solve the equation $4 \cos 6\sin^2 0$.

(b) In any ABC, if A 60°, then show that
$$\frac{b}{c a} = \frac{c}{a b} = 1$$
.

- **14.** (a) Find the equation of rectangular hyperbola whose focus is (-3, 4) and directrix is $4x \quad 3y \quad 1 \quad 0$.
 - (b) Find the eccentricity, vertices and foci of ellipse $9x^2$ $16y^2$ 144.

15. (a) Differentiate log $\frac{1}{1} \frac{x^2}{x^2}$ with respect to x.

(b) Find the derivative of tan $1 \frac{\sin x}{1 \cos x}$ with respect to x.

16. (a) If
$$x^y e^{x^y}$$
, then show that $\frac{dy}{dx} \frac{\log x}{(1 \log x)^2}$.

(b) Verify that
$$\frac{2u}{x y} \frac{2u}{y x}$$
 if $u \log(x^2 y^2)$.

- **17.** (a) Find the lengths of the tangent, normal, subtangent and subnormal to the curve $x \ a(\sin), y \ a(1 \ \cos)$ at /3.
 - (b) The volume of sphere is increasing at the rate of $1 \text{ m}^3/\text{min}$. Find the rate at which the radius and surface area are increasing when the volume is $\frac{32}{3} \text{ m}^3$.
- **18.** (a) Show that maximum rectangle that can be inscribed in a circle is a square.
 - (b) The time of oscillation of a simple pendulum of length l is given by $T = 2\sqrt{\frac{l}{g}}$ if the length is increased by 2%. Find the approximate % increase in its time of oscillation, where g is constant.

* * *

* /4041

AA15N—PDF